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The kidneys are the dose-limiting organs for radiotherapy to upper abdominal cancers and during total body ir-
radiation. The incidence of radiotherapy-associated kidney injury is likely underreported owing to its long latency
and because the toxicity is often attributed to more common causes of kidney injury. The pathophysiology of
radiation injury is poorly understood. Its presentation can be acute and irreversible or subtle, with a gradual
progressive dysfunction over years. A variety of dose and volume parameters have been associated with renal
toxicity and are reviewed to provide treatment guidelines. The available predictive models are suboptimal and re-
quire validation. Mitigation of radiation nephropathy with angiotensin-converting enzyme inhibitors and other
compounds has been shown in animal models and, more recently, in patients. � 2010 Elsevier Inc.
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1. CLINICAL SIGNIFICANCE

The kidneys are the dose-limiting organs for radiotherapy

(RT) to gastrointestinal cancers, gynecologic cancers, lym-

phomas, and sarcomas of the upper abdomen and during total

body irradiation (TBI). The kidneys are vitally important, re-

sponsible for filtering waste metabolites and electrolytes

from the blood, producing erythropoietin to stimulate red

blood cell production, and modulating blood pressure by

fluid/electrolyte balance. The incidence of RT-associated

kidney injury is likely underreported owing to its long la-

tency and because dysfunction is likely often attributed to

more common causes.
2. ENDPOINTS

The findings associated with RT-induced kidney injury

can be segregated into subclinical and clinical (Table 1). Af-

ter TBI, RT-induced kidney injury often includes features of

hemolytic-uremic syndrome (e.g., microangiopathic hemo-

lytic anemia, and thrombocytopenia) (1).

Acute (within 3 months) RT-induced kidney injury is gen-

erally subclinical. The signs and symptoms (e.g., decreased
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glomerular filtration rate [GFR], increased serum b2-micro-

globulin) usually develop during the subacute period (3–18

months). Chronic injury (>18 months) is characterized by be-

nign or malignant hypertension, elevated creatinine levels,

anemia, and renal failure (2, 3). If no changes in renal blood

perfusion or GFR are observed within 2 years after RT, sub-

sequent chronic injury is unlikely (4). RT-induced kidney in-

jury can also reduce a patient’s reserve against future renal

insults.

The long latency for clinical kidney toxicity was high-

lighted in a study of 67 patients with peptic ulcer disease,

without pre-existing hypertension, who were treated with

�20 Gy within 3 weeks (encompassing the left kidney) (5).

Of the 67 patients, 31 (46%) developed kidney toxicity within

8–19 years after RT, including 7 patients with fatal uremia (n
= 5) or malignant hypertension (n = 2). At autopsy, atrophy of

the left kidney with degenerative changes of the small and me-

dium arteries were observed. The long latency for RT-induced

kidney injury and the high prevalence of confounding non–

RT-related factors (see the section ‘‘Patient- and Treatment-

Related Factors’’) that can injury the kidneys have hindered

our ability to understand the effects of partial kidney RT.
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Table 1. Radiation-associated kidney toxicity endpoints

Category Physiologic Biochemical Imaging

Subclinical Elevated blood pressure
Increased weight

Elevated serum b2-microglobulin
Elevated urine beta2 microglobulin
Elevated serum blood urea nitrogen
Elevated serum creatinine
Elevated serum renin
Reduced glomerular filtration rate
Decreased creatinine clearance*
Proteinuria
Urine casts
Hematuria
Anemia

Reduced glomerular function, GFR
99mTc-DTPA renography

Reduced tubular function
99mTc-DMSA scintigraphy

Perfusion deficits on scintigraphy
131Iodine radiohippurate

Asymmetric uptake of intraenous contrast on
computed tomography

Kidney atrophy

Clinical Malignant hypertension
Headache, Edema, Dyspnea
Fatigue, Nausea, Vomiting
Confusion, Coma, Death

Abbreviations: 99mTc-DTPA = 99mTechnetium-diethylene-triamine-penta-acetic acid; GFR = glomerular filtration rate; 99mTc-DMSA =
99mTechnetium-dimercaptosuccinyl acid.

* Often used to estimate GFR.
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3. DEFINING THE KIDNEYS

The kidneys are relatively easy to identify on the planning

computed tomography (CT) scan, even without intravenous

contrast. Typically, the doses delivered to each kidney alone

and combined should be evaluated. Ideally, the kidney paren-

chyma should be segmented, because this is the ‘‘functional’’

component. The magnitude of errors introduced by including

the collecting system in the ‘‘kidney volume’’ is unclear.

The existing published data were largely derived from pa-

tients treated without computed tomography-based planning,

and with delivery techniques associated with substantial do-

simetric uncertainty (e.g., the moving strip technique). Even

with modern planning, kidney breathing motion or shifts in

kidney position are not usually accounted for, introducing

uncertainty in the delivered vs. the planned kidney doses

(6). The kidneys move inferiorly (by #7 cm) and change

shape in the upright vs. supine position (7); thus, if kidney

blocks were designed using supine CT scans for patients

treated in the upright position (e.g., with TBI), the actual kid-

ney doses would be far greater than planned.
4. REVIEW OF DOSE–VOLUME DATA

The risk of RT-induced kidney injury largely depends on

the use of whole-volume or partial-volume RT to one or

both kidneys. In the present report, whole kidney tolerance

refers to bilateral, uniform kidney RT, segregated by the

use of TBI or not, and partial kidney tolerance includes

any partial-volume RT experience, including uniform RT

to one kidney.
Whole kidney tolerance
The dose–response data for whole kidney irradiation in pa-

tients undergoing TBI is summarized in Table 2 and Fig. 1.

Patients undergoing TBI typically have substantial co-mor-

bidities and also receive potentially nephrotoxic chemother-
apy. Cheng et al. (8) conducted a comprehensive review of

12 studies reporting kidney toxicity (increased creatinine or

hemolytic uremic syndrome) after TBI (Table 2 and

Fig. 1). On multivariate analysis, for those reports describing

adult-only experience (n = 479 patients), the dose was the

only significant factor associated with increased kidney tox-

icity. Neither the dose rate nor the number of fractions were

significant in their model. For the studies that included adult

and pediatric populations (n = 437 patients), significant fac-

tors included the dose, dose rate (#6 vs. 6.1–9.9 vs. $10

cGy/min) and the use of fludarabine. Considering all the stud-

ies, except for those with pediatric populations only (n = 916

patients), the number of fractions became a significant factor,

in addition to the total dose and dose rate. The dose associ-

ated with a 5% risk of kidney toxicity, without nephrotoxic

drugs, was 9.8 Gy, regardless of the fractionation scheme

used (median dose, 12 Gy; range, 7.5–14; median fractions,

6; range 1–11, delivered once or twice daily).

The whole kidney dose–response data, excluding TBI, is

summarized in Table 3 and Figs. 2 and 3. The dose–response

data are consistent with previous reviews (e.g., Emami et al.
[9] in 1991 and Cassady [10] in 1995; Fig. 1) that suggested

a total dose associated with a 5% and 50% risk of injury at 5

years of 18–23 Gy and 28 Gy, in 0.5–1.25 Gy/fraction,

respectively. Increases in creatinine clearance have been

observed after 10–20 Gy to both kidneys, at 0.8–1.25 Gy/

fraction (11).

Partial kidney tolerance
Nephrectomy is more often associated with subclinical

elevations in creatinine and late chronic kidney injury than

is ‘‘nephron-sparing’’ partial nephrectomy (12). Thus, the

global function/reserve appears related to the nephron vol-

ume, and tolerance to RT is likely reduced in patients with

one (vs. two) kidneys.

Table 4 summarizes the key studies describing partial kid-

ney tolerance to RT. Unilateral kidney RT is not risk free, as



Table 2. Selected studies of bilateral whole kidney toxicity after TBI and transplantation

Authors^ Patients (n) Population
Total kidney

dose (Gy)
Fractions

(n)

Fractions/
d

(n)
Dose rate
(cGy/min)

Renal toxicity
(%)

Chemotherapy
regimen*

Frisk 2002 22 P 7.5 1 1 15 27.3 1
Lawton 1997 72 A 14 9 3 14 18.1 2

68 A 11.9 9 3 11.9 10.3 2
17 A 9.8 9 3 9.8 0 2

Rabinowe 1991 112 A 12 6 2 7.5 9.8 3
Miralbell 1996 24 P/A 10 6 2 16 4.2 4

32 P/A 12 6 2 16 28.1 4
23 P/A 13.5 6 2 16 34.8 4

Chou 1996 58 P 12 6 2 15 3.4 5
Borg 2002 47 P/A 12 6 2 7.5 2.1 6
Bradley 1998 31 A 12 6 2 12 12.9 7

36 P 13.2 11 3 12 0 7
10 P 13.5 9 2 12 30 7

Tarbell 1990 12 P 14 8 2 10 33.3 8
15 P 12 6 2 10 46.7 8, 9

Igaki 2005 70 P/A 12 6 2 10 20 10
39 A 10 6 2 8.5 0 10

Delgado 2006 65 P/A 7.5 1 1 13 9.2 11
46 P/A 7.5 1 1 13 2.2 12
84 P/A 12 6 2 6 1.2 12
26 P/A 14.4 8 2 6 3.8 11
20 P/A 14.4 8 2 6 0 13

Moreau 2005 140 A 8 4 1 NA 3.6 14
Van Why 1991 39 P 13.2 8 2 14 23.1 15

Abbreviations: P = pediatric; A = adult; P/A = mixed; NA = not available.
Modified, with permission, from Cheng et al. (8).
^ All references in first column are included within the review by Cheng et al. (8).
* Chemotherapy regimens: 1, teniposide, daunorubicin, vincristine, cyclophosphamide, and cytarabine; 2, cytarabine and cyclophospha-

mide; 3, cyclophosphamide with or without cytarabine; 4, cyclophosphamide with or without thiotepa, daunorubicin, busulfan, or cytarabine;
5, cyclophosphamide, cytarabine, methotrexate, and etoposide; 6, cyclophosphamide with or without melphalan, busulphan, or etoposide; 7,
cyclophosphamide or etoposide; 8, cyclophosphamide, teniposide, and cytarabine; 9, neuroblastoma—teniposide, cyclophosphamide, cis-
platin, and melphalan with or without methotrexate; 10, cyclophosphamide and cytarabine or cyclophosphamide and busulfan; 11, cyclophos-
phamide and fludarabine with or without alemtuzumab; 12, cyclophosphamide with or without alemtuzumab, or melphalan, or etoposide; 13,
cyclophosphamide with or without alemtuzumab; 14, vincristine, adriamycin, and melphalan; 15, Cyclosporin A and/or amphoterecin B.
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shown by Thompson et al. (5), who observed a dose response

for kidney atrophy and clinical kidney toxicity many years af-

ter unilateral kidney RT (13). Willett et al. (14) found a vol-

ume-dependent decrease in creatinine clearance after $26

Gy to $50% of one kidney. In gastric cancer patients treated

primarily using anteroposterior beams with little dose to the

right kidney, a progressive decrease in left (vs. right) renal

function, as assessed by renography, was seen 12–18 months

after chemoradiotherapy, with an associated increase in se-

rum creatinine (15). The volume of the left kidney receiving

>20 Gy and the mean left kidney dose were associated with

increased risk of renal injury. Regional kidney injury has

been detected using scintigraphy after low doses; 5% of the

irradiated kidneys developed abnormalities after 3–6 Gy, in

15–30 fractions, independent of the irradiated volume. These

findings improved with time, likely due to the reserve capac-

ity of the spared kidney tissue (16).

Pediatric kidney tolerance
Neonates appear to have an increased sensitivity to RT.

Doses of 12–14 Gy at 1.25–1.5 Gy/fraction to an entire ne-

onate kidney have been associated with a decreased GFR
(17) and subsequent abnormalities on bone scan and intra-

venous pyelography. Age less than 5 years was associated

with increased risk of acute renal dysfunction post TBI in

one study (new reference ‘A’) For older children, no con-

vincing evidence has shown that the kidney tolerance is dif-

ferent from that of adults. A study of 108 children who

underwent nephrectomy predominantly for Wilms tumor

and RT to the contralateral remaining entire or partial kid-

ney showed that abnormal creatinine clearance was dose

dependent (18). Abnormal creatinine clearance, defined as

<63 mL/min/m2, was found in 29 (41%) of 70 children re-

ceiving <12 Gy, 15 (56%) of 27 children receiving 12–24

Gy, and 10 (91%) of 11 children receiving >24 Gy to the

remaining kidney (p < .05). All 5 patients with clearance

<24 mL/min/m2 had hypertension and elevated blood

urea nitrogen, and 4 died of kidney failure. In a different

Wilms tumor study, nephropathy was seen in 0 of 17 chil-

dren receiving 11–14 Gy to the remaining kidney and

1 (25%) of 4 receiving 14–15 Gy (fraction size not re-

ported) (10). In another study, 1 of 38 children with bilat-

eral Wilms tumors developed kidney failure after 27 Gy in

21 fractions to the lower half and 12 Gy in 11 fractions to
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Fig. 1. Dose–response curve for increased creatinine or hemolytic
uremic syndrome after total body irradiation (TBI). Open diamonds
represent fitted data for studies that included adults alone or adult/pe-
diatric mixed populations (with or without nephrotoxic drugs). Solid
squares represent fitted data for same population excluding those
treated without nephrotoxic (NT) drugs, cyclosporine, teniposide,
or fludarabine. Fractionation schemes (listed in Table 3) were con-
verted to ‘‘equivalent’’ doses delivered in six fractions at 10-cGy/
min dose rate. Modified, with permission, from Cheng et al. (8).
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the upper half of the remaining kidney (19). No kidney fail-

ure occurred in children receiving bilateral kidney doses of

10–12 Gy, in 1.5–2 Gy/fraction. In the National Wilms Tu-

mor Study experience, kidney failure was more common in

children with bilateral than unilateral Wilms tumor (20).

For the 3 patients with unilateral tumors who developed

kidney failure, the dose to the remaining kidney was 15,

18, and 20 Gy in 1.5–2 Gy/fraction.
Table 3. Selected studies of bilateral w

Investigator Patients (n) Disease Chemotherap

Kunkler 1952 (23) 55 Seminoma None

Avioli 1963 (24) 10 None
Gynecologic cancer (n

= 8),
Sarcoma (n = 1),
Seminoma (n = 1)

Keane 1976 (25) 2 Ovarian cancer None

Churchill 1978 (26) 1 Seminoma Bleomycine a
vinblastin

Irwin 1996 (27) 60 Ovarian cancer, NHL,
carcinoid

None

Schneider 1999 (11) 56 Ovarian cancer Cisplatin (n =

Abbreviations: RF = renal failure; sBP = systolic blood pressure; GFR
clearance; ESRD = end-stage renal disease; ARF = acute (<1 y) RF; NH

* Denominator estimated from text.
y Two-thirds of kidneys received 38 Gy.
In the review by Cheng et al. (8) of kidney toxicity after

TBI, for pediatric patients (n = 192), the use of cyclosporine

and teniposide was associated with an increased risk of kid-

ney toxicity. When these drugs were excluded, no dose re-

sponse was found, and, at doses #13 Gy, the incidence of

kidney toxicity was <8% (8). Data on the pediatric kidney

partial volume tolerance are not available.

RT-induced reduction in compensatory response
After injury to one kidney, a compensatory increase in kid-

ney function of the spared kidney often occurs. Low-dose RT

to the ‘‘spared’’ kidney can blunt this compensation. At 6–9

years after 40 Gy in 1.5-Gy fractions to the left kidney and

12–13 Gy in 1-Gy fractions to the right kidney, the left kidney

glomerular and tubular function, as assessed by scintigraphy,

had decreased to 21% and 31% of baseline, respectively, with

an associated decline in creatinine clearance. The compensa-

tory response was reduced compared with that in patients with

complete sparing of $70% of one kidney (21).

5. PATIENT- AND TREATMENT-RELATED FACTORS

Chemotherapy can enhance RT-associated kidney injury

in adults and pediatric populations treated with and without

TBI (8, 22) (Fig. 1). The review by Cheng et al. (8) found

that after TBI, the use of fludarabine, cyclosporine, or tenipo-

side increased the risk of renal injury (odds ratio, 6.2, 5.9, and

10.5, respectively). A TBI dose rate of #6 cGy/min and 6.1–

9.9 cGy/min was associated with an odds ratio of 0.0046 and
hole kidney irradiation (non-TBI)

y Dose (Gy)
Dose/fraction

(Gy)
Incidence of

injury Endpoint

23 or 28 0.9–1.12 22/55 (40%)
7/55

RF (sBP >160 mm Hg
+ albuminuria)
Death

23 0.92 2/18 (11%)* RF (sBP >160 mm Hg
+ albuminuria)

28 1.12 18/25 (51%)*RF (sBP >160 mm Hg
+ albuminuria)

7.5–16.5;
20–24

0.5–1.1;
1.0–1.2

0/5;
4/5

No change in GFR; no
HTN or RF;

Reduced GFR (75-
83%), no HTN or RF

25, 27 2/2 Reduced CrCl (30 mL/
min), ESRD

nd 26–38y 1.6 1/1 ARF at 5 wk

7–23 1–1.25 5/60 New HTN,
No change in CrCl

25) 5–17 0.65–1.15 71–76% Reduced CrCl by >2
mL/min,
Reduced CrCl (84–
66 mL/min)

= glomerular filtration rate; HTN = hypertension; CrCl = creatinine
L = non-Hodgkin’s lymphoma.



Fig. 2. Dose–response curve for symptomatic kidney injury after
non–total body irradiation of bilateral kidneys. Note, y axis is different
from than that in Fig. 1. Data from review from Cassady et al. (10). Fig. 3. Composite schematic of combined kidney dose–volume

histogram of data from Tables 4 and 5, represented as regions
associated with minimal (<5%), low (�5%), moderate-to-high
(�5–30%), high ($30%), or undocumented estimated toxicity risks.
Clinical experience that yielded risk estimates for each region also
indicated. Actual risks associated with using each region on its
own or regions in combination are plan-specific and associated
with substantial uncertainty.
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0.083, respectively, compared with $10 cGy/min (8). Under-

lying renal insufficiency, diabetes, hypertension, liver dis-

ease, heart disease, and smoking can also reduce the

kidney’s tolerance to RT; however, the magnitude of these

effects is unclear. Animal models have suggested that angio-

tensin-converting enzyme inhibitors, dexamethasone, and

acetylsalicylic acid can prevent and treat RT-induced kidney

injury (28–30). Angiotensin-converting enzyme inhibitors

improve non–RT-associated kidney failure (31) and, re-

cently, were suggested in a randomized trial to reduce the

incidence of nephropathy or hemolytic uremic syndrome

(3.7% vs. 15%, p = .1) after TBI (32).
6. PREDICTIVE MODELS

The Lyman-Burman-Kutcher normal tissue complication

probability model parameters (median toxic dose, 28 Gy,

n = 0.70, m = 0.10) (33) have been used to describe the tol-

erance estimates reported by Emami et al. (9). Cassady

(10) pooled the data on bilateral whole kidney RT tolerance

and confirmed a threshold dose for RT injury of 15 Gy with

a 5% and 50% risk of injury at 5 years for whole-kidney RT

of 18 Gy and 28 Gy, respectively, within 5 weeks (Fig. 2). It

has been demonstrated that greater doses can be safely deliv-

ered to partial kidney volumes (9, 34). Quantitative data to

support more refined models are not available.

Cheng et al. (8) found a less steep dose response (m = 0.26)

after TBI (median dose, 12 Gy in six fractions twice daily).

The dose associated with a 5% risk of kidney toxicity was

9.8 Gy. The addition of nephrotoxic drugs made the dose–re-

sponse curve steeper (Fig. 1).
7. SPECIAL SITUATIONS

The response of the kidney is highly dependent on the frac-

tion size; therefore, extrapolation of previous experience to

different fraction sizes can be problematic (35–38). One hy-

pothesis is that nearly complete sparing of a substantial vol-

ume of the kidney should be associated with compensatory
effects and preservation of renal function, despite the deliv-

ery of focal high doses. Symptomatic kidney injury has not

been reported after potent doses of stereotactic body radio-

therapy; however, elevations in creatinine have been ob-

served 52 months after renal stereotactic body radiotherapy

(SBRT) (39). Follow-up of long-term survivors from these

series is required to determine the kidney’s and collecting

system’s tolerance to SBRT.

Few of the published reports on kidney tolerance have

focused on intensity-modulated RT (IMRT), and the effects

of different spatial dose distributions are not well estab-

lished. IMRT often leads to a low dose delivered to a larger

volume compared with simpler plans, which might reduce

the possibility of a compensatory increase in kidney func-

tion.
8. DOSE–VOLUME RECOMMENDATIONS

All dose–volume recommendations are associated with

substantial uncertainty, because few studies are available of

patients who have been followed for $10 years. However,

some broad guidelines can be useful and will hopefully be

tested in future studies (Table 5 and Fig. 3).
9. AREAS FOR FUTURE STUDY

The kidney partial tolerance to RT is largely unknown and

deserves more study. Collaborative prospective studies are

needed, with collection of dose–volume histogram and spa-

tial dose data, along with serial long-term objective outcome

assessments. The baseline clinical kidney function and co-

morbidities need to be documented, along with the use of



Table 4. Selected studies addressing partial kidney irradiation

Investigator
Patients

(n) Disease Chemotherapy
Dose/fraction

(Gy) Dose/volume Incidence Endpoint

Kunkler 1952 (23) 60 Seminoma None 0.9–1.12 D33% < 18 Gy
(18–29 Gy to
kidneys)

0/60 No RF (sBP >160
mm Hg +
albuminuria

Thompson
1971 (5)

67 Peptic ulcer None 1.0–1.3 D50% = 15–35 Gy 31/67 RF or HTN (8–19 y)

D50% = 15 Gy 0/2 Kidney atrophy
(I/S)

D50% = 20 Gy 6/6 Kidney atrophy
(I/S)

D50% = 30–35 Gy 2/2 Marked kidney
atrophy (I/S)

2/2 Malignant HTN
Le Bourgeois

1978 (40)
74 Hodgkin’s

disease
None 1 D15–40% = 20 Gy 74/74 70% Focal decrease

in glomerular fn
3/74 Proteinuria, no

change in CrCl
Birkhead 1979 (41) 23 Hodgkin’s

disease
1 Patient 2 D16% = 40 Gy 6/16 Focal scintigraphy

changes; no RF
Kim 1980 (42) 18 NHL None 1 D25–50% = 25–44

Gy
3/18 Decreased CrCl

5/18 HTN
Kim 1984 (43) 18 NHL None 1 D25–50% = 21– 33

Gy
2/9 Reduced blood flow

or perfusion
D25–50% = 30–40

Gy
4/7 Reduced blood flow

or perfusion
D25–50% > 40 Gy 3/3 Atrophy

Willett 1986 (14) 86 Mixed Not stated 1.5–1.8 V26Gy = 50% 10% Decrease in
CrCl

V26Gy > 90% 24% Decrease in
CrCl

All patients 2/73
4/13

New HTN
Increase in HTN

medications
Flentje 1993 (44) 142 Seminoma None 0.7–1 D50% < 18 Gy 0/100 RF or HTN

D50% > 18–32 Gy 7/42
Dewitt 1993 (22) 7 Seminoma None 2 V25–35Gy = 20–30% 0/7 CrCl or SC
Dewitt 1993 (22) 7 NHL None V40Gy = 50%

V12–13Gy = 100%

25% Decrease in
glomerular fn Sc

31% Decrease in
tubular fn Sc

Kost 2002 (16) 91 Seminoma
(n = 45),

NHL (n = 42),
RCC (n = 6),

Sarcoma (n = 1)

1.8–2.0 V3–6Gy > 10%
V27Gy = 10%
V7.6Gy = 100%

5%
50%
50%

Decrease in fn Sc
Decrease in fn Sc
Decrease in renal

flow; no RF

Nevinny-Stickel
2007 (34)

19 Cervical cancer 0.4–1.8 V28Gy < 25%
V23Gy < 33%

3/19 Decrease in renal
flow; no RF

Jansen 2007 (15) 44 Gastric cancer Capecitabine
or cisplatin

(n = 21)

0.4–1.8 V20Gy (1 kidney)
>64% vs. <64%

1/15*

66% vs. 34%
decrease in fn
(I/S)

HTN
Welz 2007 (13) 27 Gastric cancer 5-FU,

cisplatin,
paclitaxel

0.4–1.8 V12Gy < 62.5%
functional
kidneys

Trend toward
increase Cr;
no HTN

Abbreviations: Dy% = dose to y% of volume; I/S = irradiated vs. spared; fn = function; RCC = renal cell cancer; 5-FU = 5-fluoruracil; Sc =
scintigraphy; Vx Gy = volume receiving >x Gy; NHL = non-Hodgkin’s lymphoma; other abbreviations as in Table 1.

* Among patients with follow-up $18 months.
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nephrotoxic or antihypertensive medications. Differences in

the dose per fraction should also be accounted for. Proposed

research topics of importance include the following:
–Pathophysiology of RT-induced kidney injury

–Interaction between clinical factors and kidney tolerance

to RT



Table 5. Suggested dose–volume constraints for estimated
risk of <5%

Variable
Dose–volume

metric Investigator

Bilateral kidney irradiation
TBI Mean kidney

dose <10 Gy
Cheng et al. (8)

Non-TBI Mean kidney
dose <18 Gy

Cassady (10)

Partial kidney irradiation
Bilateral kidneys Mean kidney

dose <18 Gy
Nevinny-Stickel

et al. (34)
Bilateral kidneys V28Gy < 20% Nevinny-Stickel

et al. (34)
Bilateral kidneys V23Gy < 30% Nevinny-Stickel

et al. (34)
Bilateral kidneys V20Gy < 32% Jansen et al. (15)
Bilateral kidneys V12Gy < 55% Welz et al. (13)*
If mean kidney dose to

1 kidney >18 Gy
V6Gy (remaining

kidney) <30%

Abbreviations: Vx Gy = volume of bilateral kidneys receiving >x
Gy; TBI = total body irradiation.

* Estimated from Welz et al. (13); 62.5% reduced to 55% because
62.5% was functional volume.

Table 6. K/DOQI stages of chronic kidney disease (kidney
disease occurring for > 3 mo)

Stage Description GFR (mL/min/1.73 m2)

1 Kidney damage with normal
or GFR

$90

2 Kidney damage with mildly
decreased GFR

60–89

3 Moderately decreased GFR 30–59
4 Severely decreased GFR 15–29
5 Kidney failure <15 (or dialysis)

Abbreviations: K/DOQI = Kidney/Dialysis Outcomes Quality
Initiative; GFR = glomerular filtration rate.

Kidney damage defined as pathologic abnormalities or markers of
damage, including abnormalities in blood or urine tests or imaging
studies.

Data from National Kidney Foundation (available from: www.
kidney.org).
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–Mitigating factors and radioprotectors

–Renal compensatory effects and how low-dose RT alters

the compensatory capacity

–Spatial variation in radiation sensitivity (e.g. with func-

tional imaging)

–Surrogates for risk of clinical toxicity (e.g., cytokines,

proteonomics)
10. SCORING TOXICITY

Studies of RT-induced kidney injury have been con-

founded by the use of variable, most often asymptomatic,

endpoints, largely because the symptoms usually occur

many years after RT. Because early changes in renal flow

and GFR correlate with an increased risk of subsequent

symptomatic toxicity, these endpoints should be considered

in future studies. The severity of injury should be graded

according to the GFR, as has been recommended for all

chronic kidney disease (Table 6) (45). Serial urine protein,

serum blood urea nitrogen, creatinine clearance, blood pres-

sure measurements, and symptoms of renal failure can also

been used to grade the severity of RT-induced injury (46).
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