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Purpose: Accurate organs at risk definition is essential for radiation treatment of brain tumors. The aim of
this study is to provide a stepwise and simplified contouring guide to delineate the OARs in the brain as it
would be done in the everyday practice of planning radiotherapy for brain cancer treatment.
Methods: Anatomical descriptions and neuroimaging atlases of the brain were studied. The dosimetric
constraints used in literature were reviewed.
Results: A Computed Tomography and Magnetic Resonance Imaging based detailed atlas was developed
jointly by radiation oncologists, a neuroradiologist and a neurosurgeon.
For each organ brief anatomical notion, main radiological reference points and useful considerations are
provided.
Recommended dose-constraints both for adult and pediatric patients were also provided.
Conclusions: This report provides guidelines for OARs delineation and their dose-constraints for the treat-
ment planning of patients with brain tumors.
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The delineation of intracranial OARs is one of the most crucial
points in the planning of brain tumors because radiotherapy (RT)
to the brain can lead to visual and hearing deficits, hormonal
impairment and neurological and neurocognitive alterations.

Moreover, accurate delineation of OARs is essential for the
inverse-planning process of intensity modulated radiation
treatment.

Although cerebral normal structures are not always easily
recognizable on the imaging used for RT planning, to date, the ana-
tomic delineation of these structures has not been standardized for
planning purposes.

This guide might be a tool for daily practice and for decreasing
the discrepancies in intracranial OARs delineation between radia-
tion oncologists.
Methods

Anatomical descriptions and neuroimaging atlases of the brain
were studied [1–9].
A simplified but detailed anatomy atlas on Computed Tomogra-
phy (CT) and Magnetic Resonance Imaging (MRI) of the brain has
been developed in order to significantly improve the contour accu-
racy and concordance. For each organ at risk we added some main
notions of neuroanatomy, we also defined structures that are easy
to identify to be used as landmarks; lastly, we stated some useful
considerations for helping in contouring. The atlas was then
critically reviewed, discussed, and edited by radiation oncologists,
a neuroradiologist and a neurosurgeon.

The following regions of interest were defined: optic chiasm,
cochlea, hippocampus, brainstem, pituitary gland, circle of Willis,
retina, lacrimal gland and lens.

This report also provides for all the above-mentioned OARs a
brief review for the recommended dosimetric constraints both
for adult and pediatric patients.

Results

Optic chiasm

Anatomical notions
The optic chiasm, probably the most crucial intracranial organ

at risk is the convergence of the optic nerves in front and the
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divergence of the optic tracts behind. With conventional CT or MRI,
the optic tracts are visible for only 1–2 cm posterior to the optic
chiasm before the fibers spread and blend into the rest of the brain
parenchyma.

The optic chiasm lies below the hypothalamus, the third ventri-
cle and its optic recess. It rests upon the tuberculum sellae, in the
so-called chiasmatic groove. The chiasm is surrounded by the cere-
brospinal fluid contained in the chiasmatic cistern. The anterior
cerebral arteries and the anterior communicating artery are locat-
ed ventral to the chiasm. Lateral to the optic chiasma are the inter-
nal carotid arteries. The crossing of the optic fibers occurs just
anterior to the pituitary stalk.

Landmarks
The structures that need to be identified in order to have a cor-

rect contouring are the optic canals (Supplementary Fig. sI: sIa, sIb,
sIe, sIf) from which optic nerves originate (Fig. 1a and b), the ante-
rior clinoid processes of the sphenoid bone (Supplementary Fig. sI:
sIa, sIb, sIe, sIf) and the internal carotid arteries (Fig. 1a and b) on
Fig. 1. Region of the optic chiasm as it appears on axial T1-weighted MRI scan with contr
its relationship to the circle of Willis.
each side (Fig. 1g), and, posteriorly, the pituitary stalk (Fig. 1a) or
the infundibular recess (Fig. 1c and d).

Both CT (Supplementary Fig. sI) and MRI images (Fig. 1) are use-
ful to identify these reference structures.

The pituitary stalk is the most important landmark because it
lies just behind the crossing of the fibers. It is not difficult to be
found because it is hyperintense in T1-weighted images, but also
slightly hyperdense in CT images, even when the contrast is not
used.

In the superior slices, behind the chiasma the infundibular
recess (Fig. 1c and d) can be found instead of the pituitary stalk
(that is caudally placed). This structure is well-recognizable
because it lies in the same median position as the pituitary stalk
but it is ring-shaped.

Useful considerations
The optic chiasm measures about 14 mm in its transverse

width, with an antero-posterior width of about 8 mm and a thick-
ness of only 2–5 mm.
ast. Optic chiasm is contoured as a dotted line. (g) Anatomy of the optic chiasm and
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The chiasm is usually slightly sloping upward and backward.
This is the reason why, depending on the orientation of the scan
plane relative to the brain, the optic nerve and chiasm can appear
on multiple images.

Moreover, the location of the chiasm and the grade of its sloping
vary widely. In almost 80% of cases the chiasm is found superiorly
to the posterior 2/3 of the sella but it can also overlay or lie behind
the dorsum sellae.

Contouring the optic pathway with continuity is crucial,
because gaps in the structures will lead to missing essential
volume for the computing of the dose–volume histogram.

Checking the contour on a sagittal (Supplementary Fig. II: sIIa)
and on a coronal view (Supplementary Fig. II: sIIb) is strongly
recommended because the anatomy will appear clearer and the
contours can be confirmed.

Dose recommendations
The constraints for chiasm are the following: maximum dose

less than 54 Gy as primary criteria [10–11] (being the optic
neuropathy unusual for doses <55 Gy [11,12]), less than 60 Gy as
secondary criteria [10] (being the incidence of optic neuropathy
less than 7% for doses 660 Gy [12]) (Table 1).

No differences in constraints between adults and children have
been reported.
Cochlea

Anatomical notions
The cochlea is a spiral structure around a central bony structure,

the so-called modiolus. Fibers originated from the endolymphatic
receptor system of the cochlea, reach the internal acoustic canal.
Here, they form the cochlear nerve that joins the superior and infe-
rior vestibular nerves, forming the VIII cranial nerve (Fig. 2c), and
traveling together with the facial nerve through the pontocerebel-
lar cistern until they reach the brainstem.

Landmarks
The cochlea is located in a bony cavity in the petrous portion of

the temporal bone, anterior to the labyrinth, lateral to the internal
auditory canal. Although the cochlea is not directly visible on CT
scan due to its small size and its deep location in the temporal
bone, its volume can be defined on CT images as the bony cavity
Table 1
Dose constraints and recommendations for intracranial organs at risk when conventional

OAR Constraints for adults

Primary criteria Seconda

Optic chiasma Dmax < 54 [10,11] Dmax < 6
Dmax < 55 [12]

Cochlea Dmean 6 45 Gy [13,14]
Dmean < 50 Gy [10]

Hippocampus Hippocampus
Dmax 6 6 Gy and V3 Gy 6 20%
Hippocampal avoidance volume
Dmax < 25.2 Gy and
V20 Gy 6 20% [21,22]
Dmax < 12 Gy [23]
V7.2 Gy < 40% [25]
Dmean < 30 Gy [24]

Brainstem Dmax < 54 Gy [10,29] Dmax < 6
D59 Gy <

Pituitary gland Dmax < 50 Gy [34]
Dmax < 60 Gy [10]

Retina Dmax < 45 Gy [10, Yamazaki]
Dmax < 50 Gy [Shaffer]

Lacrimal gland V30 Gy < 50% [Sreeraman]
Dmax < 40 Gy [Jeganathan]

Lens Dmax < 6 Gy [Piroth]
Dmax < 10 Gy [10, Yamazaki]
where it lies, using an appropriate bone window/level (Supple-
mentary Fig. sIII). The structures of the inner ear are well visible
in the MRI images (Fig. 2), especially when high-resolution 3D
imaging techniques such as the balanced Steady-State Free Preces-
sion (bSSFP) sequences or the sampling perfection with applica-
tion-optimized contrasts by using different flip angle evolutions
(SPACE) sequences are used [13].
Useful considerations
Since the average volume of the cochlea usually does not exceed

0.60 mL image thickness 61.0 mm is recommended.
Dose recommendations
Because of the small volume of the cochlea a dose–volume ana-

lysis is not feasible and only recommendations about the mean
dose can be found in literature.

The recommended dose constraints vary a lot between children
and adults, being the limits for pediatric patients significantly low-
er. Several studies in series of adult patients have attempted to
relate mean cochlear dose to the development of sensorineural
hearing loss and they reported a significant increase in hearing loss
when the mean dose received by the cochlea was >45–50 Gy
[10,14,15]. In the case of children, hearing loss was rare below
30 Gy and increased at doses of 40 Gy [16,17]. Therefore, in chil-
dren, the mean dose to the cochlea should be kept below 35 Gy.

The synergistic toxicity of chemotherapy when combined with
RT has to be taken into consideration, especially when patients
receive cisplatinum-based chemotherapy [18].
Hippocampus (dentate gyrus)

In recent years, based on experimental and clinical evidence,
some authors have suggested that irradiation of the hippocampal
dentate gyrus can lead to neurocognitive impairment due to the
presence of neural stem cells [19].

Because the cognitive dysfunction seems to be proportional to
the volume and amount of irradiated tissue in this location, the
delineation of this portion of hippocampus has recently become a
crucial point during the treatment planning process. Gondi et al.
[20] have recently published the contouring guidelines for the
hippocampus.
fractionation is used.

Constraints for children
(if different from the ones reported for adult patients)

ry criteria

0 [10]

Dmean < 35 Gy [16]

0 Gy [10]
10 cc [29]

Dmean < 25 or 30 Gy [32]
Dmax < 42 Gy [35]



Fig. 2. Region of the cochlea as it appears on axial SPACE (sampling perfection with application-optimized contrasts by using different flip angle evolutions) MRI scan.
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Anatomical notions
Since the hippocampus is mainly made of grey matter, focusing

on the T1-hypointense signal would be suggested. The grey matter
that constitutes the hippocampus is easily distinguishable from the
other surrounding structures except for the amygdala that, in the
more caudal slices, lies anteriorly to it and that is formed by grey
matter as well. The amygdala should be excluded from the contour
of the hippocampus [6–8,20] in order to the subgranular zone
where the neural stem cells occur [21]. The hippocampus is easily
recognizable at the level of the curve of the temporal horn, the so-
called uncal recess, because it is the grey matter included in the
curve and is bound anteriorly, laterally, and medially by the cere-
brospinal fluid in the temporal horn (Fig. 3c and d). At this level the
boundary from the amygdala is easy to define because the amyg-
dala is the grey matter located medially to the temporal horn of
the lateral ventricle. The boundary between the hippocampus
and the amygdala is not evident in the more caudal slices
(Fig. 3a and b): thus, it has to be extrapolated from more superior
slices where the uncal recess is visible. In its lower portion the hip-
pocampus reaches the caudal extremity of the temporal horn,
remaining medial to it.

Coming back to the uncal recess and continuing in an upward
direction, the hippocampus is the most medial grey matter strip
in the temporal lobe, just lateral to the midbrain and it moves pro-
gressively posteriorly (Fig. 3e and f). At this level, the lateral mar-
gin of the hippocampus is surrounded by cerebrospinal fluid from
the lateral ventricle, while the medial boundary is limited from the
CSF-containing space lateral to the brainstem, the so-called ambi-
ent cistern (Fig. 3d and e). Cranially, the medial boundary of the
hippocampus is defined by the lateral edge of the quadrigeminal
cistern (Fig. 3e).

The hippocampal tail curves medially toward the splenium of
the corpus callosum, remaining posterior to the thalamus. The cra-
nial extent of the hippocampal tail is located antero-medially to
the atrium of the lateral ventricle. Also in its superior extent, the
hippocampus remains lateral to the quadrigeminal cistern and
medial to the atrium of the lateral ventricle (Fig. 3h). The T1-
hypointense area of the hippocampus is no further visible when
the splenium of the corpus callosum can be visualized posteriorly.
Landmarks
The grey matter of the hippocampus remains medially to the

temporal horn of the lateral ventricle throughout its extent, and
so, it can be used as a consistent reference. The ambient and the
quadrigeminal cisterns serve as medial landmarks.

Useful considerations
The literature describes considerable age and disease specific

variability in hippocampal size and location: this limits the applica-
bility of any autocontouring technique for the delineation of the
hippocampus using a population-generated atlas [8]. Furthermore,
automated atlases do not specifically focus on the dentate gyrus
that is the hippocampal portion of concern for memory function.

Only certain MRI sequences such as SPGR (three-dimensional
spoiled gradient), MPRAGE (magnetization-prepared rapid gradi-
ent echo) or TFE (turbo field echo) sequences permit accurate
definition of the dentate gyrus.

Very thin slice-thickness is necessary to visualize the hip-
pocampus: slice-thickness of 1–2 mm has been suggested [20].

Orientation of the MRI slices along the axis of the hippocampus
allows a better hippocampal visualization [7].

Identifying the hippocampus is not difficult on sagittal images
where its overall ‘‘banana’’ shape, located in the plane of the lateral
ventricle, can easily be seen. Thus, the sagittal view can be useful to
check the contours drawn on the axial images (Supplementary
Fig. IV).

Dose recommendations
The constraints used for the hippocampus vary a lot in the lit-

erature [20–26] but they have seldom been associated with clinical
outcome (Table 1). At this time there is no evidence to conclusively
support a particular recommendation. Recently, Gondi et al. [25]
found that doses greater than 7.3 Gy to 40% of the bilateral hip-
pocampus were associated with impaired memory function in a
small retrospective series of 18 patients affected by low-grade
adult brain tumors. Noteworthy, most authors recommend lower-
ing the doses to the bilateral hippocampal volume, however, if the
ipsilateral hippocampus cannot be spared due to its proximity to
the PTV, only the contralateral hippocampus can be contoured
and spared [26].



Fig. 3. Hippocampus as it appears on axial T1-weighted MRI scan with contrast. Hippocampus is contoured as a dotted line.
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Recently, Gondi et al. [27] published the results of the RTOG
0933, a single-arm phase II study that demonstrated that avoid-
ance of the hippocampus during whole brain radiotherapy is asso-
ciated with preservation of quality of life and memory. In this
series, 100% of the hippocampus could not exceed 9 Gy, and max-
imal hippocampal dose could not exceed 16 Gy in 10 fractions.

Only further prospective trials evaluating neurocognitive func-
tion will provide more consistent dose volume constraints associ-
ated with lower risk of cognitive impairment.

Brainstem

Anatomical notions
The brainstem comprises the midbrain, pons and medulla oblon-

gata (Fig. 4a–d). It starts from the superior limit of the posterior cli-
noids to the inferior limit of the foramen magnum. It continues
superiorly with the diencephalon and inferiorly with the spinal cord.

Landmarks
The brainstem is surrounded by the cerebrospinal fluid con-

tained in the cisterns: these structures can help to define the bor-
ders of the brainstem. Starting from the top, quadrigeminal and
ambient cisterns (Fig. 4b) are situated dorsally and laterally to the
midbrain. The interpeduncular cistern (Fig. 4a) lies anteriorly to
the midbrain, while the prepontine cistern (Fig. 4a and c) surrounds
the ventral wall of the pons and it contains the basilar artery that is
well-recognizable both in CT and MRI images. Going downward,
there is the premedullary cistern (Fig. 4a and d) and, laterally, the
pontocerebellar cistern (Fig. 4c) that is located in the angle between
the cerebellum and the pons, containing the V, VII and VIII cranial
nerves. Inferiorly, the cisterna magna (Fig. 4a and d) lies between
the cerebellum and the dorsal wall of the medulla oblongata, con-
taining the IX, X, XI and XII cranial nerves.

Useful considerations
Visualization of sagittal plane may be helpful when defining the

brainstem (Fig. 4a).
The midbrain is about 2 cm in length. The midbrain is inferior

to the third ventricle. Its posterior part is represented by the
quadrigeminal plate. Anteriorly, it is limited by the two mammil-
lary bodies (portion of the hypothalamus) (Fig. 4a and b).

The pons is the thicker portion of the brainstem of about 25–
30 mm in length. It bulges from the midbrain and medulla and is
separated from them by the superior and inferior pontine sulci. It
is posteriorly covered by the cerebellum, united to it by means of
the middle cerebellar peduncles.

The medulla oblongata is the lowest part of the brainstem. It
continues caudally with the spinal cord.

Dose recommendations
On the basis of the available data, the entire brainstem may be

treated to 54 Gy using conventional fractionation with limited risk
of severe or permanent neurological effects [28,29]. Smaller vol-
umes of the brainstem (1–10 mL) may be irradiated to maximum
doses of 59 Gy for dose fractions of 2 Gy [10,29].

There is no evidence that the tolerance of the pediatric patient
differs from the adult.
Pituitary gland

Anatomical notions
The pituitary gland appears as an oval-shaped structure and lies

within a bony cavity of the sphenoid bone in the base of the skull,
the so-called sella turcica. It lies immediately below the brain and
is connected by the stalk to the hypothalamus (Fig. 5). The gland is
divided into two lobes: the neurohypophysis and the adenohy-
pophysis, each with its own embryological derivation and array
of secretory hormones.

Landmarks
The pituitary gland lies on the sella turcica that is clearly visi-

ble on a CT scan when an appropriate bone window/level is used.
Laterally, the pituitary gland is surrounded by the cavernous
sinuses: they are well visible structures on images (Fig. 5c)
when contrast is used. As mentioned, the pituitary stalk lies
behind the crossing of the optic fibers in the chiasma (Fig. 1a, b
and g).



Fig. 4. Brainstem on sagittal T1-weighted MRI scan (5a) and on axial T1-weighted MRI scan with contrast (5b: image at level of midbrain; 5c: image at level of pons; 5d:
image at level of medulla oblongata). Brainstem is contoured as a dotted line.
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Useful considerations
The CT density of the pituitary gland is similar to the brain

parenchyma and is readily discernable from the surrounding CSF.
When contrast is used, the gland may appear slightly more hyper-
dense compared to the brain parenchyma due to its more vascular
nature. The pituitary gland’s anterior and posterior parts are distin-
guishable on an MRI. The anterior part is isointense on both T1 and
T2-weighted images. The posterior pituitary is often a thin layer of
tissue that is hyperintense on T1 images and hypointense on T2-
weighted images.

The craniocaudal dimension of the pituitary gland varies over
time and is affected by the hormonal state (ranging from 6 mm
for infants to 12 mm for pregnant women).

The pituitary stalk has a normal thickness of 2 mm, and should
not exceed a maximum of 4 mm or the width of the basilar artery.

Dose recommendations
Hypothalamic-pituitary axis dysfunction may occur in up to

80% of patients treated with RT. Frequency, time to onset and
severity of symptoms are related to the total dose, to the fractional
dose, to the age at the time of irradiation and to the length of fol-
low-up.

Selective radiosensitivity of the cell populations accounts for
different incidence of the hormonal deficits, with the GH axis the
most radiosensitive, followed by gonadotropin, ACTH and TSH axes
[30,31].

The impairment of GH production occurs in 30% and in 50% of
patients who received 30 Gy and dose ranging between 30 and
50 Gy, respectively [30]. Isolated GH deficiency may be seen also
after low-dose cranial RT (18–24 Gy) [32], and even after total-
body-irradiation for doses of 10 Gy [33].

Gonadotrophin deficiency is usually a long-term complication
following a radiation dose of 30–40 Gy with a cumulative inci-
dence of 20–50% after long-term follow up [30,34]. In contrast,
irradiation may cause premature activation of the hypothala-
mus–pituitary–gonadal axis resulting in precocious puberty after
doses of 30 Gy [30] with different timing of onset of puberty: the
younger the age at exposure to irradiation, the earlier the onset
of puberty [31].
TSH and ACTH deficiency occur after doses >30 Gy with a long
term cumulative frequency of 3–9% but the frequency may sig-
nificantly increase in the longterm follow-up if the doses are high-
er than 50 Gy [30,31].

Hyperprolactinemia, due to a radiation-induced reduction in
the inhibitory neurotransmitter dopamine, has been described in
female adults treated with radiation doses >40 Gy [30].

Age at irradiation influences hypothalamic–pituitary axis vul-
nerability to radiation damage [35]; hormone deficiencies are more
frequent in children than adults, and in younger children compared
with older ones. This is probably the reason why in literature
regarding adult patients, the constraints for the pituitary gland
are often higher, ranged between 50 and 60 Gy [10,34]. A long-
term follow-up of patients who received significant doses to the
pituitary gland is crucial, because early replacement therapy may
avoid endocrinological syndromes.
Internal carotid artery and the circle of Willis

Anatomical notions
The internal carotid artery enters the cranium through the car-

otid canal. The carotid siphon is an S-shaped portion of the internal
carotid artery inside the cavernous sinus, lateral to the sella turcica
(Fig. 5b–d). The artery arches upward and backward and then, after
a horizontal tract, arches again upward and forward. In this stretch
the internal carotid artery is separated from the blood contained in
the sinus only by the endothelium and it lies medial to the cranial
nerves contained therein (III, IV and VI cranial nerves and oph-
thalmic branch of the trigeminal nerve).

The circle of Willis is a ring-shaped circulatory anastomosis
(Fig. 5e–h), that connects the internal carotid and vertebral arter-
ies, ensuring supply of blood to the brain should one of these ves-
sels be occluded. It is located in the interpeduncular cistern, in the
cranial base.

The anterior half of the circle of Willis is formed by the internal
carotid arteries when they enter the cranial cavity bilaterally and
branch into the anterior cerebral artery and middle cerebral artery.
The anterior communicating artery joins the anterior cerebral
arteries. Posteriorly, the basilar artery, formed by the left and right



Fig. 5. Pituitary gland, carotid siphon and circle of Willis as they appear on axial T1-weighted MRI scan with contrast. Pituitary gland appears as a dotted line.
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vertebral arteries, divides at the upper border of the pons into a left
and right posterior cerebral artery, forming the posterior portion of
the polygon. From each internal carotid artery, a posterior commu-
nicating artery arises and runs back to join the ipsilateral posterior
cerebral artery, completing the circle of Willis.

Useful considerations
The knowledge of anatomic relationship between the circle of

Willis and the optic chiasm may be helpful in the contouring pro-
cess (Fig. 1g). The chiasm passes through the circle of Willis, being
the optic structures subtended anteriorly through the ring of the
circle. In other words, the anterior cerebral arteries and the anteri-
or communicating artery lie cranially to the chiasm (Fig. 5g and h),
whereas the posterior communicating arteries lie caudally to the
optic tracts (Fig. 5e and f).

Dose recommendations
Little is known about the long-term risk of cerebrovascular

morbidity associated with radiation therapy to the circle of Willis.
Haddy et al. [36] estimated the radiation dose delivered to differ-
ent anatomical sites of interest in the brain of more than 4000
long-survivors of a childhood cancer. They found that risk of death
from cerebrovascular disease is related to the radiation dose to the
prepontine cistern: patients who had received >50 Gy to the pre-
pontine cistern had a 17.8-fold higher hazard ratio of death if com-
pared with cases who had not received radiotherapy. The authors
suggested that the dose to the prepontine cistern could be an indi-
rect measure of the dose to the circle of Willis. A relationship
between higher doses to the circle of Willis (mean dose 61 Gy;
range 54–79.5 Gy) and cerebrovascular disease was suggested also
by Omura et al. [37].

Previous reports showed that radiation therapy could cause
progressive occlusion of major cerebral arteries resulting in chron-
ic cerebral ischemic condition and neovascularization with abnor-
mal network of vessels. This condition, is called ‘‘radiation induced
moyamoya-like syndrome’’ for the clinical and radiological simila-
rities with the moyamoya congenital disease and it has been fre-
quently observed among patients treated with radiotherapy at a
pediatric age [38], probably because immature nervous system
has a greater ability to induce neoangiogenesis in chronic cerebral
ischemia [39].

Age 610 years during radiation treatment [38], radiotherapy
volume involving the cranial base [39], time interval after radio-
therapy >5 years [39] and neurofibromatosis-1 [40,41] are recog-
nized as risk factors for this syndrome. Total doses >45 Gy [40]
or 50 Gy [41] have been related to a greater risk but even doses
as low as 12 Gy have been reported in cases that developed this
syndrome (12 Gy [42]).

Eye

Useful considerations
A field strength of 3T or higher, a surface coil and ultra-high

resolution sequences are required for visualization of the finest
structures of the eye. Since the orbital fat may show similar signal
intensity as the globe wall and the lacrimal gland on T2- and con-
trast-enhanced T1W-sequences, sequences with saturation of fat
tissue signal (FAT–SAT) should be used [43].
Retina

Anatomical notions
The retina is the innermost of the three layers that form the wall

of the eyeball (sclera, uvea/choroid and retina). Its function is to
convert light into electrical nerve signals.

It is an approximately 0.25 mm-thick neurosensorial membrane
with a rich vascularization and it lines the posterior wall of the eye.

The retina cannot be directly visualized on the standard MRI
sequences for the orbit. It can be drawn as a membrane that lays
in the posterior 5/6 of the bulb, extending nearly as far as the cil-
iary body (Supplementary Fig.: V: Va–Vg). On axial images the
anterior limit of the retina is between the insertion of the medial
rectus muscle and the insertion of the lateral rectus muscle, poste-
riorly to the ciliary body.

Dose recommendations
Radiation retinopathy is a complication of radiation exposure to

the retina. Ionizing radiation induces a slowly progressive occlu-
sive vasculopathy with transudation, edema and neoangiogenesis.
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The latter can result in glaucoma, exudative retinal detachment,
vitreous hemorrhage and, eventually, in blindness [44,45].

The risk of radiation-induced retinopathy is based on total dose,
fraction dose, the presence of comorbidities (e.g., diabetes), and
exposure to radiation sensitizers such as chemotherapy [44].
Although numerous treatments have been tested (corticosteroids,
anticoagulation, laser photocoagulation, hyperbaric oxygen ther-
apy, and bevacizumab), effectiveness for any option still needs to
be proven and the therapeutic management remains controversial
[46].

Retina maximum dose should be less than 45 [10,47] or 50 Gy
[48].
Lacrimal gland

Anatomical notions
The lacrimal gland lies in the supero-lateral extraconal portion

of the orbit, medially to the zygomatic process of the frontal bone;
it can be easily identified superiorly to the lateral rectus muscle
and laterally to the superior rectus muscle (Supplementary Fig.:
V: Vd–Vh). Its size varies a lot with maximum diameters reaching
20 mm in the craniocaudal length, 15 mm in the axial length and
up to 5 mm in the anteroposterior length [49].

Dose recommendations
Radiation-induced damage can lead to the impairment of tear

production with results ranging from a less effective lubrification
of the cornea and the conjunctiva to a dry-eye syndrome.

A steeply increasing risk for dry eye syndrome has been report-
ed at doses >40 Gy, whereas irradiation of the lacrimal gland with
doses >57 Gy results in a 100% rate of atrophy and fibrosis of the
lacrimal gland with permanent loss of tear secretion [50].

Sreeraman et al. [51] found a correlation between dose to the
lacrimal gland and its acute dysfunction, suggesting to maintain
V30 less than 50%.
Lens

Anatomical notions
The lens of the eye is a biconvex avascular structure, located

between the vitreous and the iris (Supplementary Fig.: V: Vc–Ve).
Its diameter measures up to 10 mm.

Dose recommendations
Radiotherapy may cause abnormalities of its fibers resulting in a

cataract for dose exceeding 2 Gy. For doses less than 6.5 Gy there is
a 33% risk that the cataract will be progressive with a latency of
8 years, while for doses between 6.5 and 11.5 Gy there is a 66% risk
of cataract progression with a latency of 4 years [50]. Recommend-
ed dose constraints for adults range between 5 [52] and 10 Gy
[10,47] as maximum dose. Although these constraints are used also
in paediatric literature [53], the threshold for cataract formation
may be lower in childhood [50].

Conclusions

This report might represent a tool if or radiation oncologists in
everyday practice providing the recommendations for contouring
the intracranial OARs and listing their dose-constraints for RT
planning.
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